RoboCup Standard Platform League - rfUNSWift 2010

Jayen Ashar, David Claridge, Brad Hall, Bernhard Hengst,
Hung Nguyen, Maurice Pagnucco, Adrian Ratter, Stuart Robinson,
Claude Sammut, Benjamin Vance, Brock White, Yanjin Zhu
University of New South Wales, Australia
{j ayen,davidc,bradh,bernhardh,dhung,morri,adrianr,
stuartr,claude,bvance,brockw,yanj inz}@cse .unsw.edu.au

Abstract

Multi-agent robotic competitions such as
RoboCup provide the motivation for a devel-
opmental research agenda — one that focuses
on the evolution of complete working systems
and their cognitive architectures. In this paper,
we describe the components and integration of
one such system — the 2010 RoboCup Standard
Platform League entry rUNSWift. The real-
time control architecture employed consists of a
hierarchy of modules that implement functions
of perception, world-modelling and behaviour
generation. The system was successfully de-
ployed in both soccer and challenge competi-
tions.

1 INTRODUCTION

At the time of the 50th anniversary of the 1956 Dart-
mouth summer research project on artificial intelli-
gence (AI), concern was raised by several researchers
that AI’s shared vision of creating intelligent machines
may be threatened by the fragmentation of the field
into a myriad of speciality areas with little commu-
nication between them [Cohen, 2005; Langley, 2006;
Brachman, 2006]. In response they called for what Co-
hen termed a developmental research strategy, one that
demands complete, integrated systems to solve whole
problems.

Robotic competitions can provide challenging prob-
lems that foster a developmental research agenda and
motivate re-integration of AI. RoboCup™ is such an in-
ternational research and education initiative providing
standard problems where technologies can be integrated
and examined?.

In this paper, rather than focus on one component
in great detail, we describe a complete and integrated
robotic project — that of the rUNSWift multi-agent sys-

'RoboCup http://www.robocup.org/

tem comprising three bipedal Nao robots? competing in
the 2010 RoboCup Standard Platform League (SPL) in
soccer (Figure 1). Our aim is to provide an overview of
all the key components of the system and their interre-
lationship through the framework of a cognitive robotic
agent architecture.

Figure 1: rUNSWift team of Nao robots playing soccer
in the 2010 RoboCup SPL league in Singapore.

It would not have been possible for a new multi-person
team to undertake such a complex project in the short
time available without instituting adequate project man-
agement systems and practices. We employed a suite
of products® to facilitate collaboration and knowledge
management, track issues, and keep tabs on the team
members and the state of repair of our robots. Further
elaboration on project management is outside the scope
of this paper.

Innovative developments ranged across all components
and systems, and while incremental, it is a case of the
whole being more that the sum of its parts. Consistent
with a developmental research approach that starts with
a poor, but complete working system, innovation fol-
lowed the Kaizen practice of continually improving all
functions by involving team members, to ratchet up the

2 Aldebaran http://www.aldebaran-robotics.com/
3from Atlassian Pty Ltd http://www.atlassian.com/

competence of the system. The project involved the total
rewrite of the real-time robot control system by largely
undergraduate students supported by research students
and faculty staff over a period of 8 months.

In the rest of the paper we start by discussing intel-
ligent agent architectures and the specific architecture
employed by rUNSWift. This is followed by a systems
level description of the main components of the system:
perception, the world-model, and behaviour generation.
Finally we describe the real-time monitoring tools de-
signed to support the development effort and comment
on results achieved with the final system tested under
conditions of international competition.

2 ROBOTIC ARCHITECTURE

The literature abounds with cognitive agent architec-
tures. Examples include: ICARUS, a cognitive archi-
tecture that incorporates ideas including work on pro-
duction systems, hierarchical task networks, and logic
programming [Langley et al., 1991]; SOAR, a symbolic
cognitive architecture based on a production system
[Lehman et al., 1996]. A key element of SOAR is a
chunking mechanism that transforms a course of action
into a new rule; BDI (Belief-Desire-Intention), a software
model for programming intelligent agents that has led to
several agent implementations [Rao and Georgeff, 1995];
and Adaptive Control of Thought — Rational (ACT-R),
a cognitive architecture that aims to define the basic
and irreducible cognitive and perceptual operations that
enable the human mind [Anderson, 2005]. A recent sur-
vey [Langley et al., 2009] explores the motivations for
research on cognitive architectures and reviews several
other architectures that have been explored in the liter-
ature.

While our robotic architecture was independently de-
veloped, it is similar to Albus’s Real-time Control Sys-
tem (RCS) [Albus, 1991], a multi-layer control system
composed of a hierarchy of modules whose functional
elements include sensor processing, world-modelling, be-
haviour generation and value judgement.

2.1 rUNSWift Robotic Architecture

The rUNSWift robotic architecture is best envisaged as
a task-hierarchy [Dietterich, 1998] that consists of a set
of finite state machines [Hartmanis and Stearns, 1966
linked in a lattice. Tasks are modules of the architec-
ture that accept input, perform a computation that can
change the state of the module and produce output as
a function of the input and state. The output may be
input to another module or invoke an action.

If an action invokes and executes another module it is
called an abstract or temporally extended action. An ac-
tion that has a direct effect on the agent’s environment it
is called a primitive action. We call actions multi-tasking

—~
Game - Controller ¥ 2"

:)
!

Roles (Robot-behaviour, eg Goalie, Striker, Supporter) J

!

Skills (localise, position, find-ball, track-ball, get-behind-ball, kick-ball, getup)

I]

N

» State Estimation Jar (" Actuation (head- \
Field-State + Robot-State *::,l movement, leg/
. ¢ < arm-movement,
camera-switching,
Sensing (cameras, IR, hall-effect, joint-angles, speakers, LEDs,
foot-sensors, IMU, bumpers, sonar, wireless) wireless)

f !

[Environment (this robot, ball, other robots) }

Figure 2: The 2010 rUNSWift robotic architecture.

when they are required to complete multiple subtasks,
but can do so only one at a time [Hengst, 2008]. They
are concurrent when they execute multiple tasks at the
same time. When subtasks terminate, they return con-
trol to their parent task. Generally the states of the
system represent more abstract concepts as we ascend
the control hierarchy and the reaction time decreases.

Task-hierarchies have been formalised in approaches
to hierarchical reinforcement learning and open the door
to learning behaviour at multiple levels [Andre, 2003;
Ferrein et al., 2003).

The rUNSWift robotic architecture is shown in out-
line in Figure 2. As the team of three Naos have no
central controller, control is distributed by implement-
ing the architecture on each robot. This restriction is
imposed by the event organisers and has the advantage
of providing some redundancy in case individual robots
are disqualified or stop working. The robots may have
slightly different beliefs about their world formed from
partially observable and noisy inputs.

At the root-level, the game-controller changes soccer
play states (Initial, Ready, Set, Playing, Penalized, Fin-
ished) and player robots determine their roles (Striker
or Supporter) by sharing world-models. At these higher
levels the control response is measured in seconds or even
minutes.

At lower levels, the walk-generators execute tempo-
rally extended walk-phases that invoke primitive state
changes in joint angles at 100 Hz. The omni-directional
walk and kick generators are themselves task-hierarchies.
In some cases the the rUNSWift architecture may exe-
cute through as many as nine-levels of task-hierarchy.

3 PERCEPTION
3.1 Vision

Identification of objects in a video feed is a significant re-
search area in robotics and forms the major component
of the robot’s sensory perception of the world. While the
structured area of a soccer field permits the use of algo-
rithms tailored for the identification of specific objects,
such as the orange ball used in the competition, a game
of soccer played using the Nao robots presents specific
and complex challenges in the field of computer vision,
including:

e Vision has to run fast enough to provide up-to-
date information to other components. 640 x 480
pixel video frames should be processed at 30 frames
per second on the Nao’s 500MHz processor and still
leave capacity for all other functions.

e Objects must be identified accurately enough to al-
low kinematics to provide reasonable estimates of
their distance from the robot.

e The vision system must be robust enough to per-
form with a high level of image blurring due to the
bipedal locomotion, varying lighting conditions over
the field and a significant amount of object occlusion
from referees and other robots.

Our new approach to object identification combines
cues from both colour classification and edge detection.
Colour classification allows fast identification of approx-
imate areas of objects, while edge detection allows the
positions of these objects to be found very accurately in
the image, and provides a substantial amount of robust-
ness to uneven and changing lighting conditions.

Figure 3: Using the combined cues of colour and edge
features, the orange ball is able to be located and seg-
mented out to accurately determine its image location
and radius. This information together with the pose of
the robot and camera allows the robot relative ball dis-
tance and direction to be determined. Left — Colour clas-
sified image used for segmentation. Centre — Ball edge
points overlaid on the original image. Right — Geometry
used to find candidate circles. We take the median of
several random samples.

We start with a saliency-scan by subsampling each
visual frame to produce a much smaller 160 x 120 pixel

colour classified image to efficiently identify the probable
locations of the various objects. By focussing attention
on high probability locations within the full 640 x 480
resolution, we effectively implement a virtual saccade in
software to accurately determine the location of each ob-
ject in the frame. Figure 3 shows colour and edge cues
used to identify a ball.

Figure 4: Edge detection using RANSAC.

The saliency-scan was also used to identify field-edges
using a random sample consensus RANSAC algorithm
[Fischler and Bolles, 1981] as shown in Figure 4. The
horizon is calculated from the forward kinematic chain
from the foot to the camera. The field-edges and the
horizon allow us to reason about the objects in the envi-
ronment. For example, soccer balls cannot appear above
the field-edge and the recognition system rules these hy-
potheses out.

Figure 5: Detection of goal-posts, field-edge, and robots.

The part of the image that contains the field is scanned
to identify and grow regions [Rofer et al., 2009] that
could possibly contain balls, robots, or field-lines. The
shapes in these regions and colours of the pixels is used
to identify the most probable objects they contain, and
specific algorithms for ball, field-line, and robot detec-

Figure 6: Image showing field-lines and corresponding
matches.

Figure 7: Shortest distance of all locations to nearest
field-edge point.

tion can be used on the appropriate regions to reliably
and accurately identify the objects. Figure 5 shows the
detected field-edge, two goal-posts, and three robots.
Figure 6 shows field-line detection matching field-edge
points locally using a distance metric from a precom-
puted nearest-line distance map of the field shown in
Figure 7, along similar lines to [Sheh and Hengst, 2004].

Figure 8: Accurate detection of goal-posts despite con-
siderable noise in the colour-classified image.

Using histogram information generated with the
saliency-scan, goal detection is performed separately as
the goals are mostly above the field edge. Figure 8 is
an example of object detection where the lighting con-
ditions have considerably degraded the goal-post colour
as previously classified. Nevertheless, this information is
sufficient to help demarcate the goal-post edges.

Once the position of an object in the image has been
identified, we use a kinematics chain to estimate the dis-
tance and heading the object is away from the robot. In
some circumstances where kinematics cannot provide an
accurate distance estimation, other methods are used,
such as the width of goal-posts and the radius of the
ball, to calculate the distance.

Gl 2E6)

ggggg

Calbrate from goal e

Figure 9: The pink convex shaped area at the bottom
left of the image is excluded from processing due to the
robot’s own shoulder.

To ensure that vision does not detect objects such as
field-lines or balls within the robot’s image of its own
body, forward-kinematics is used to determine where
parts of the body would appear in the image, and these
areas are excluded from vision processing as shown in
Figure 9.

3.2 Sonar

Left and right sonar sensors are available on the Nao.
We augmented the robot’s belief about the location of
other robots with appropriately filtered sonar observa-
tions. The filter retained the history of the last 10 sonar
values. At each iteration it looped over these 10 values
and if 8 of them were below a threshold an object was
detected occasioning avoidance behaviour.

4 WORLD-MODEL

Sensors only provide partial and noisy information about
the environment. Robots need a component that al-
lows them to integrate observations over time and filter
out noise to build up a relevant and complete picture
of their surroundings and themselves. This process is
also called situation awareness, a term rooted in military
history and now more widely adopted. In control engi-
neering, statistics and signal processing we refer to this
component as state-estimation, usually by some form of
Bayesian filtering.

As shown in Figure 2, the rUNSWift architecture di-
vides the environmental state into two sets of variables,

field-state and robot-state. Field-state defines the loca-
tion and orientation of all the robots and the ball re-
quired to reason about actions at a more strategic level.
Robot-state includes the pose and dynamics of the robot,
and whether it can see the ball. It is required to predict
the field-of-view of the camera and the closed-loop con-
trol of bipedal walking and kicking. The total state is
kept on a Blackboard (shared memory).

Each robot’s world-model is broadcast at 5 Hz to each
of its team-mates, informing them of its belief about
its position and that of the ball. This information is
incorporated in the world-model of each robot.

4.1 Bayesian Filtering

For efficient state-estimation, we chose to use a combina-
tion of particle (PF) and Kalman filters (KF) [Thrun et
al., 2005]. The particle filter is used without resampling
to quickly integrate temporal information. It terminates
when it narrows the robot position down to one likely
hypothesis. Its invocation is usually required when the
robot is placed anew on the field — solving the so-called
“kidnapped robot” problem. The uni-modal Kalman fil-
ter uses two types of observation updates. When ob-
servations uniquely measure the position of the robot we
use standard KF updates with time-varying gains. When
the observations are ambiguous and are consistent with
multiple hypotheses, we update based on the hypothesis
that is closest to the current estimated position of the
robot. The dissonance between observations and current
belief is indicated by a high innovation variance and de-
termines when to switch in the PF again.

The robot-relative ball position is independently fil-
tered using a KF, however we have previously used a
multi-modal KF to track the combined state of all our
robots and the ball [Sushkov, 2006).

The robot state is determined from unfiltered joint-
sensors, constant gain filtered accelerometers and foot-
sensors. The field-state and robot-state is fed back to
vision to provide context for interpreting the scene.

4.2 Position Observation Geometry

Observations from vision can provide redundant noisy
information, for example, the distance to two goal-posts
plus the subtended angle between them. While in princi-
ple we can filter this information with appropriate sensor
models, for efficiency reasons we use closed form geomet-
ric calculations. The accuracy of determining the posi-
tion can depend on the estimated location on the field.
Figure 10 and 11 show two ways to determine the posi-
tion of the robot given the observation of two goal-posts.
The orange circle shows equi-subtended angle positions.
The yellow circle shows equidistant positions to the near-
est goal. The yellow dot is the reported robot position.
Further down-field, the method in Figure 10 leads to

multiple hypotheses (blue dots) when measurements are
noisy. Instead we use the distance to both goal-post and
project the point (intersection of yellow circles) from the
goal-centre to be consistent with the subtended angle.

Figure 10: In corner field positions the distance to the
nearest goal-post and the subtended angle between the
posts is more accurate.

Figure 12 shows the geometric reasoning employed
when the robot sees a field-edge and a single goal-post.
The distances to these objects alone will generate up to
12 position hypotheses, 6 of which are on one side of
the goal-posts. We test consistency with the direction of
both the field-line and the goal-posts, and only accept
an observation when we have exactly one match.

Figure 11:
down-field.

Robot position observation when further

The observations used to localise the robot include
goal-post distances and directions, field-edge inclinations
and distances, and local field-line matching. One feature
of the system is the close integration of vision and field-
state estimation, each providing context to the other
with innovation variance breaking the loop when the sys-

tem traps itself in a discordant state.

Figure 12: Multiple position hypotheses are generated
from distance observations to a goal-post and a field-line
(blue dots). They may be narrowed down to one (yellow
dot) when directional data is consistent.

5 BEHAVIOUR GENERATION

The task-hierarchy in Figure 2 starts from the soccer
game-controller that manages the two 10 minute game
halves and cascades down to actions setting joint angles
at 100Hz. The behaviour generation along this path is
best divided into robot roles and skills implemented in
Python (described in the appendix), and actuation or
motion generation that executes omni-directional loco-
motion and kicking.

5.1 Motion Generation

The Nao is a flat-footed bipedal robot required to play
a competitive game of soccer. We therefore need to
concern ourselves with the opposing requirements of
speed and agility for this 21 DoF machine — rapid
stop/start, acceleration/deceleration, turns, and accu-
rate kicks. Other than special canned routines for get-
ting up, the main motion generators are based on bipedal
locomotion routines. We used a combination of three
gaits; one supplied by the manufacturer, and two of our
own SlowWalk and Fast Walk.

SlowWalk has the desirable property that the robot’s
weight can be shifted totally to either leg and in this
statically balanced state the other leg is free to move to
execute various omni-directional kicks; forward, 45deg
to either side of forward, sideways and backward.

FastWalk is a dynamic gait designed for speed with
a duty factor* just over 50%. The walk is designed by

4Duty factor is the percent of the total cycle which a given
foot is on the ground. Duty factors over 50% are considered
a "walk”, while those less than 50% are considered a run.

treating the sagittal (forward) and coronal (sideways)
dynamics as orthogonal and then synchronously recom-
bining the two motions to produce bipedal locomotion.

The coronal rocking frequency (2.6Hz) is induced by
lifting each leg alternately. It is tuned to the natural
frequency of the robot and the cycle synchronised using
the zero-crossing point of the filtered centre-of-pressure
(CoP) measured across both feet. The dynamics of the
system are best understood in terms of an inverted pen-
dulum model. Figure 13 shows a diagram of the model,
and the simulated and actual CoP and leg-lift motions.

T TR

Figure 13: Inverted pendulum model for the FastWalk
coronal rocking motion. The red dot is the centre-of-
mass of the system. The pivot of the pendulum changes
depending on which foot-edge makes contact with the
ground as the robot rocks from side to side. The top
time-series plot shows the centre-of-pressure over both
feet (blue squarish wave) and the sinusoidal leg-lift for
the simulated gait for each foot (+ve one foot, -ve the
other). The bottom time-series shows the same plots
measured on the actual Nao robot.

The sagittal motion keeps the upper body moving at
constant speed determined by the three walk parame-
ters — forward, sideways, turn. The legs alternate be-
tween stance and swing phases keeping the double sup-
port phase close to zero seconds. Foot placement is de-
termined by the three walk parameters to achieve omni-
directional locomotion. The swing foot stride is max-
imised by a constant acceleration of the foot to the
halfway point, followed by a constant deceleration to a
complete stop just before replacement. This is designed
to minimise slippage with the other foot which we as-
sume is governed by dry friction forces. Sagittal motion
is stabilised with feedback from the sagittal centre-of-
pressure by leaning the upper body forward or backward.

Figure 14 shows an example plot of various dynamic
variables characterising the omni-directional bipedal gait
as the robot accelerates from a standing start to full-
pace and is directed to make a sharp turn to the left.
The plot shows cycle-time, coronal and sagittal centre-
of-pressure, left and right stride lengths, and the amount
of turn. To avoid falling over, the robot first decelerates
before executing the turn.

Cycle-time Coronal-CoP Sagittal-CoP Left-stride Right-stride Turn
W % N T i
L
R ENASATEATEE A L4 ER) J/ AR ELEAY W

-HHHA AR

Figure 14: Various time-series data showing FastWalk
accelerate from a standing start to a speed of 24cm/sec
and then executing a hard turn. The stride length
plots show automatic deceleration as the turn rate is in-
creased. During this left turn the right leg stride length
is longer than that of the left leg. The sagittal CoP
shows some destabilisation during the onset of the turn,
but is feedback corrected.

8 &8 8 8 B
~ =
-

=

The algorithm driving the leg joint angles relies on in-
verse kinematic calculations in closed-form and on iter-
ative methods [Buss, 2004] when turing due to the com-
plexity of the hip-joint with Nao motors inclined at 45
degrees to the body.

5.2 Behaviour Roles and Skills

The top-level behaviour roles are striker, supporter, and
goalie. Rules required the goalie to be a dedicated robot.
The striker and supporter role is switched dynamically
depending on which robot is closest to the ball. To re-
duce decision vacillation and conflict, hysteresis is used
to threshold these behaviours.

The state of each role is determined by the robot and
field states of the world-model. The behaviour mod-
ules function as finite state machines, with the state suc-
cinctly determined by a decision tree. The leaves of the
tree are the states that invoke concurrent head and body
skills. Skills include parameterised GotoPoint, FindBall,
TrackBall, Localise, ApproachBall, and Kick routines.

6 OFF-BOARD MONITORING

Off-Nao is a desktop off-board monitor application to
help debug the autonomous robotic system online and in
real-time. The application can also separately run the
vision module on a sequence of recorded frames, allowing
for reproduction of errors and regression testing of vision
enhancements. Off-Nao has several tabs to switch-in de-
bugging modules.

The overview tab (Figure 15) displays the colour clas-
sified image overlaid with detected objects. It also dis-
plays a 2D view of the world-model of a robot including
the belief of the location of all robots and the ball.

The colour calibration tab (Figure 16) is used to train
the robots vision system with a nearest-neighbour classi-
fier to recognise the primary colours in the environment.

sor | CameraPose | Graph | WP | Joints

Ballis at (256, 151)
Ball @ 3063.77, 6.17978, 0.107858
numEdges 1

(8] (mJ{xa] (0] &

Figure 15: Off-Nao Overview Tab.

Figure 16: Colour calibration tab (right) and the resul-
tant nearest neighbour classified YUV 3D colour-space
(left).

Off HaoTVisuaflsen BE

Camera Fose | Graph | 2ve | jots

i

R EEEEE R

)000000000000080
SEEEECEFEEERE

g
=

|

Figure 17: The Camera Calibration tab in Off-Nao.

The vision tab allows closer analysis of the object
recognition system. The calibration tab adjusts param-
eters in the kinematic chain to offset the camera pose
for each robot. Figure 18 shows an Off-Nao screen-shot
calibrating camera offsets.

266

Figure 18: Off-Nao showing kinematic calibration of
camera offsets.

A camera calibration tab is used to tune 16 camera pa-
rameters to achieve a good compromise between image
clarity and colour separation given venue lighting condi-
tions. These setting were determined manually this year,
but we are experimenting with hill-climbing algorithms
to automate this process using a maximum entropy fit-
ness criterium.

The graph tab plots the time-series for accelerome-
ters, foot-sensors, torso-tilt, sonar, battery charge and
current.

7 CHALLENGE COMPETITION

In addition to the soccer competition, team innovation
is stretched with three challenges. In 2010 these were
ball passing, dribbling and a open challenge [RoboCup
SPL Technical Committee, 2010].

Accurate ball passing and dribbling around obstacles
requirers a more controlled kick. The specially developed
passing kick had the right reliability characteristics. For
the passing kick the robot lines up the ball with one foot,
takes a forward step with the non-kicking foot placing it
slightly in front of the ball, and then swings the kick-
ing foot through at controlled speeds to kick the ball.
The rational behind this action is to guide the direction
of the kick and to control the amount of kinetic energy
imparted to the ball. Over the desired shorter kick dis-
tances, the variance in both direction and distance was
reduced from that of the more powerful forward impact
kick.

For the open challenge we chose to find, pick-up, and
throw-in a more regular black and white ball. The
amount of non-ball black and white in the scene is sig-
nificant and our standard orange-ball edge detector does
not suffice. Instead we use a circular Hough transform

on all transitions to green pixels. By processing only
the subsampled saliency-image, reducing the dimension-
ality, range, and discretisation of the Hough transform,
and caching trigonometric functions, the transform per-
formed at an acceptable 25 frames per second. Figure 19
shows the edge pixels, the 2D Hough accumulator array,
and the final ball overlaid on the original image.

Figure 19: Black and white ball detection. Left — edge
pixels. Centre — Grey scale 2D Hough accumulator array.
Right — detected ball location.

8 RESULTS

One way to evaluate results for system developmental
research is to test the final system in the environment
for which it is designed, to see whether it achieves its
objectives, and to compare it to competitors. The SPL
league in RoboCup differs from other leagues in that
the robotic hardware is identical for all competitors and
may not be modified, with results reflecting only the
suitability of robotic architectures and the performance
of software components.

rUNSWift took out first place in the Challenge com-
petition and was a finalist in the SPL soccer compe-
tition in Robocup 2010, Singapore. The results are
shown in Figure 20. The top four teams in the 2010
competitions, out of a field of 24, are the University of
New South Wales (rUNSWift), the University of Bremen
(B-Human), the University of Texas at Austin (Austin
Villa), and Carnegie Mellon University (CMurfs). A
video is available on this website http://www.cse.
unsw.edu.au/~robocup.

9 CONCLUSIONS

This paper presented some aspects of the design of
rUNSWift’s 2010 robotic software for the Nao, and the
contributions we made to the state of the art. This year
saw innovations in all major components: Vision, Lo-
calisation, Behaviour, and Motion; and importantly, we
developed a robust and modular framework that can be
used to facilitate research going forward. The full 150
page report is available from the University of New South
Wales [Ratter et al., 2010].

A key to rUNSWift’s performance in the 2010
RoboCup Competition was the effective allocation of hu-
man resources, through making design trade-offs, such
as implementing a less sophisticated localisation sys-
tem that was relatively simple to develop and accurate

Challenges Passing Open Dribbling Sum
rUNSWift 24 22 23 69
Austin Villa 25 19 24 68
CMurfs 22 13 21 56
B-Human 23 24 0 47
Nao Team Humboldt 19 23 - 42
Austrian Kangaroos 0 16 25 41
UPennalizers 19 - 22 41

Robo Eireann 19 21 - 40

Quarter Qi
Finals

B-Human UPennalizers 8:1
Q2 Austin Villa Nao-Team HTWK 3:1

Q3 rUNSWift Northern Bites 3:0

Q4 NimbRo CMurfs 1:2

Semi finals S1 B-Human Austin Villa 8:0
SZ2 rUNSWIft CMurfs 6:0

3@Place 3rd Place Austin Villa | CMurfs 5:1

Final Final

B-Human rUNSWift 6:1

Figure 20: Results for the three challenges (top) and the
soccer competition (bottom).

enough for our needs, or using a slower language for be-
haviour, that allows for rapid development. This allowed
us to focus our efforts on the systems that needed major
overhaul to be effective on the Nao platform, particularly
Vision and Motion. All these systems have proved them-
selves worthy in the face of competition, and provide a
strong platform for future teams to work from.

Of particular significance is the adoption of a Paul Co-
hen’s developmental approach, that gradually improves
the competence of the whole system over time. Instead

If the organisers had followed the traditional di-
vide and conquer strategy, then the first few annual
competitions would have tested bits and pieces — vi-
sion, navigation, communication, and control — and
we would probably still be waiting to see a complete
robotic team play an entire game. — [Cohen, 2005].

Appendix — Systems Implementation

A major task to facilitate integration of the system was a
total rewrite of software. We provide here a brief outline
of the scope of the software engineering involved.

The Nao is provided with a fully-functional Linux op-
erating system, as well as custom software. Standard
practice is to program the robot by producing a dynamic
library that is loaded when the robot boots to allow for
interaction with third party code. The disadvantage of
this approach is that it can create difficulty in debug-

ging and recovery from crashes. To avoid damage to
the robot, and to isolate potentially dangerous and com-
plex code in the robot’s control system from low-level
hardware interaction, we have developed two separate
binary packages that we deploy on the robot: libagent
and runswift, which communicate using shared memory.

The primary purpose of libagent is to provide an ab-
straction layer over the Device Communications Man-
ager (DCM) that has the simple task of reading sensors
and writing actuation requests. Due to its simplicity,
is is less likely to contain errors, and thus less likely
to crash and cause the robot to fall in a harmful way.
The DCM provides two functions, atPreProcess and
atPostProcess, to register callback functions which are
called before and after the 10ms DCM cycle, respectively.
In the pre-DCM-cycle callback function, we read the de-
sired joint and LED commands from the memory shared
with ‘runswift’, and use the DCM’s setAlias commands
to actuate the robot. In the post-DCM-cycle callback
function, all sensor values are read into shared memory.

The runswift executable is a multi-threaded process,
featuring 6 threads: Perception, Motion, Off-Nao Trans-
mitter, Nao Transmitter, Nao Receiver and GameCon-
troller Receiver. All of these except for Perception are
IO bound, providing reasonable multithreading perfor-
mance on a uniprocessor, such as the AMD Geode found
in the Nao.

Off-Nao is a desktop application written with the Qt4
widget toolkit, which streams data from the Nao using
a TCP/IP connection established using the boost::asio
C++ library. Recordings can be reviewed in Off-Nao
to help debug vision processing, world-model state-
estimation, and monitor other sensory variables. Fig-
ure 18 shows an Off-Nao screen-shot calibrating camera
offsets.

To facilitate the rapid development of behaviours, we
chose to use a dynamic language, Python. The Python
interpreter was embedded into the runswift C++ exe-
cutable using libpython. The inotify library for Linux
was used to monitor a directory on the robot contain-
ing Python code, and reload the interpreter whenever
Python code changes. This architecture allows us to
make small modifications to behaviour and upload them
to the robot whilst runswift is still running. The robot’s
motion thread is uninterrupted, so it will continue walk-
ing, standing, or kicking as per the action request on
the Blackboard. When the replacement Python code is
uploaded, the Perception thread continues with the be-
haviours reset.

The boost::asio C++ library is used to broadcast in-
formation from each robot at 5 Hz to each of its team-
mates, informing them of its position and the position of
the ball, this information is incorporated at the Locali-
sation level.

10 ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the
ARC Centre of Excellence for Autonomous Systems and
contributors: Oleg Sushkov, Will Uther, Carl Chatfield,
Nathan Kirchner, Jannik Jakobson, Jesper Sorensen,
Sowmya Arcot, Ammar Alanazi, Franco Caramia, Tenin-
dra Abeywickrama, Brenda Ford. Aldebaran Robotics
supplied and repaired the robots. Atlassian Pty Ltd pro-
vided the JIRA suite for project management.

References

[Albus, 1991] James Albus. Outline for a theory of intel-
ligence. In IEEFE Transactions on Systems, Man and
Cybernetics, 1991.

[Anderson, 2005] John R. Anderson. Human symbol
manipulation within an integrated cognitive architec-
ture. Cognitive Science, 29:313-341, 2005.

[Andre, 2003] David Andre. Programmable reinforce-
ment learning agents. PhD thesis, 2003. Chair-Russell,
Stuart.

[Brachman, 2006] Ronald J Brachman. More than the
sum of its parts. AI Magzine, 27(4):19-34, Winter
2006.

[Buss, 2004] Samuel R. Buss. Introduction to inverse
kinematics with jacobian transpose, pseudoinverse
and damped least squares methods. Technical report,
IEEE Journal of Robotics and Automation, 2004.

[Cohen, 2005] Paul R Cohen. If not Turings’s test, then
what? Al Magzine, 26(4):61-67, Winter 2005.

[Dietterich, 1998] Thomas G. Dietterich. Hierarchical
reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Re-
search, 13:227-303, 1998.

[Ferrein et al., 2003] Alexander Ferrein, Christian Fritz,
and Gerhard Lakemeyer. Extending dtgolog with op-
tions. In Georg Gottlob and Toby Walsh, editors, IJ-
CAI pages 1394-1395. Morgan Kaufmann, 2003.

[Fischler and Bolles, 1981] Martin A. Fischler and
Robert C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image

analysis and automated cartography. Commun.
ACM, 24(6):381-395, 1981.

[Hartmanis and Stearns, 1966] J. Hartmanis and R.E.
Stearns. Algegraic Structure Theory of Sequential Ma-
chines. Prentic-Hall, 1966.

[Hengst, 2008] Bernhard Hengst. Partial order hierar-
chical reinforcement learning. In Australasian Confer-
ence on Artificial Intelligence, pages 138-149, 2008.

[Langley et al., 1991] Pat Langley, Kathleen B. McKu-
sick, John A. Allen, Wayne F. Iba, and Kevin Thomp-
son. A design for the icarus architecture. SIGART
Bull., 2(4):104-109, 1991.

[Langley et al., 2009] Pat Langley, John E. Laird, and
Seth Rogers. Cognitive architectures: Research is-
sues and challenges. Cognitive Systems Research,
10(2):141-160, June 20009.

[Langley, 2006] Pat Langley.
and general intelligent systems.
zine, 27(2):33-44, Summer 2006.

[Lehman et al., 1996] Jill Fain Lehman, John Laird, and
Paul Rosenbloom. A gentle introduction to soar, an
architecture for human cognition. In In S. Sternberg
and D. Scarborough (Eds), Invitation to Cognitive Sci-
ence. MIT Press, 1996.

[Rao and Georgeff, 1995] Anand S. Rao and Michael P.
Georgeff. Bdi agents: From theory to practice. Pro-
ceedings of the first international conference on mul-

tiagent systems ICMAS95, 1995.

[Ratter et al., 2010] Adrian Ratter, Bernhard Hengst,
Brad Hall, Brock White, Benjamin Vance, David Clar-
idge, Hung Nguyen, Jayen Ashar, Stuart Robinson,
and Yanjin Zhu. runswift team report 2010 robocup
standard platform league. Technical report, School of
Computer Science and Engineering, University of New
South Wales, 2010.

[RoboCup SPL Technical Committee, 2010]

Cognitive architectures
Al Magzine Maga-

RoboCup SPL Technical Committee. Tech-
nical challenges for the robocup 2010 stan-
dard platform league competition. Website:

http://www.tzi.de/spl/bin/view/Website/WebHome,
2010.

[Rofer et al., 2009] Thomas Rofer, Tim Laue, Ju-

dith Miiller, Oliver Bosche, Armin Burchardt,
Erik Damrose, Katharina Gillmann, Colin Graf,
Thijs Je ry de Haas, Alexander Hartl, An-

drik Rieskamp, André Schreck,
beck, and Jan-Hendrik Worch. B-human team
report and code release 2009. http://www.b-
human.de/index.php?s=publications, 2009.

[Sheh and Hengst, 2004] Raymond Sheh and Bernhard
Hengst. A fast vision sensor model: Matching edges
with nightowl. In Australian Conference on Robotics
and Automation, 2004. rTUNSWift 2004.

[Sushkov, 2006] Oleg Sushkov. Robot Localisation Us-
ing a Distributed Multi-Modal Kalman Filter, and
Friends. Honours thesis, The University of New South
Wales, 2006.

[Thrun et al., 2005] S Thrun, W Burgard, and D Fox.
Probabilistic Robotics. MIT Press, 2005.

Ingo Sieverding-

